WQO dichotomy for 3-graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WQO dichotomy for 3-graphs

We investigate data-enriched models, like Petri nets with data, where executability of a transition is conditioned by a relation between data values involved. Decidability status of various decision problems in such models may depend on the structure of data domain. According to the WQO Dichotomy Conjecture, if a data domain is homogeneous then it either exhibits a well quasi-order (in which ca...

متن کامل

Decidability Border for Petri Nets with Data: WQO Dichotomy Conjecture

In Petri nets with data, every token carries a data value, and executability of a transition is conditioned by a relation between data values involved. Decidability status of various decision problems for Petri nets with data may depend on the structure of data domain. For instance, if data values are only tested for equality, decidability status of the reachability problem is unknown (but deci...

متن کامل

Chordal graphs, interval graphs, and wqo

Let ! be the induced-minor relation. It is shown that, for every t, all chordal graphs of clique number at most t are well-quasi-ordered by !. On the other hand, if the bound on clique number is dropped, even the class of interval graphs is not well-quasi-ordered by !. c © 1998 John Wiley & Sons, Inc. J Graph Theory 28: 105–114, 1998

متن کامل

Hamiltonian Path in Split Graphs- a Dichotomy

In this paper, we investigate Hamiltonian path problem in the context of split graphs, and produce a dichotomy result on the complexity of the problem. Our main result is a deep investigation of the structure of $K_{1,4}$-free split graphs in the context of Hamiltonian path problem, and as a consequence, we obtain a polynomial-time algorithm to the Hamiltonian path problem in $K_{1,4}$-free spl...

متن کامل

Hamiltonicity in Split Graphs - A Dichotomy

In this paper, we investigate the well-studied Hamiltonian cycle problem, and present an interesting dichotomy result on split graphs. T. Akiyama, T. Nishizeki, and N. Saito [22] have shown that the Hamiltonian cycle problem is NP-complete in planar bipartite graph with maximum degree 3. Using this reduction, we show that the Hamiltonian cycle problem is NP-complete in split graphs. In particul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Computation

سال: 2020

ISSN: 0890-5401

DOI: 10.1016/j.ic.2020.104541